Ira, J.V. Enzymatic alcoholysis of palm kernel oil in n-hexane and SCCO2. J. Supercrit. Fluids 2001, 19, 141?48. Mittelbach, M. Lipase catalyzed alcoholysis of sunflower oil. J. Am. Oil Chem. Soc. 1990, 67, 168?70. Li, S.-F.; Fan, Y.-H.; Hu, R.-F.; Wu, W.-T. Pseudomonas cepacia lipase immobilized onto the electrospun PAN nanofibrous membranes for biodiesel production from soybean oil. J. Mol. Catal. B 2011, 72, 40?five. Kumari, V.; Shah, S.; Gupta, M.N. Preparation of biodiesel by lipase-catalyzed transesterification of higher cost-free fatty acid containing oil from Madhuca indica. Power Fuels 2006, 21, 368?72. Hsu, A.-F.; Jones, K.; Marmer, W.; Foglia, T. Production of alkyl esters from tallow and grease utilizing lipase immobilized in a phyllosilicate sol-gel. J. Am. Oil Chem. Soc. 2001, 78, 585?88. Noureddini, H.; Gao, X.; Philkana, R.S. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour. Technol. 2005, 96, 769?77. Or ire, O.; Buisson, P.; Pierre, A.C. Application of silica aerogel encapsulated lipases in the synthesis of biodiesel by transesterification reactions. J. Mol. Catal. B 2006, 42, 106?13. Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995?021. Ito, A.; Shinkai, M.; Honda, H.; Kobayashi, T. Healthcare application of functionalized magnetic nanoparticles. J. Biosci. Bioeng. 2005, one hundred, 1?1. Huang, S.-H.; Liao, M.-H.; Chen, D.-H. Direct binding and characterization of lipase onto magnetic nanoparticles. Biotechnol. Prog. 2003, 19, 1095?one hundred. Mak, K.-H. Immobilization of Lipase from Pseudomonas cepacia onto Magnetic Nanoparticles. Master’s Thesis, Tatung University, Taipei, Taiwan, June 2008. Mak, K.-H.; Yu, C.-Y.; Kuan, I.-C.; Lee, S.-L. Immobilization of Pseudomonas cepecia Lipase onto Magnetic Nanoparticles for Biodiesel Production. In Progress in Development and Applications of Renewable Energy; Yang, S.-S., Sayigh, A.A.M., Lai, C.-M., Chen, S., Eds.; National Taiwan University: Taipei, Taiwan, 2009; pp. 51?eight. Montgomery, D.C. Response Surface Solutions and Designs. Design and Analysis of Experiments, 6th ed.; John Wiley Sons: Hoboken, NJ, USA, 2005; pp. 405?63. Kuan, I.-C.; Lee, C.-C.; Tsai, B.-H.; Lee, S.-L.; Lee, W.-T.; Yu, C.-Y. Optimizing the production of biodiesel applying lipase entrapped in biomimetic silica. Energies 2013, six, 2052?064. Chen, H.-C.; Ju, H.-Y.; Wu, T.-T.; Liu, Y.-C.; Lee, C.Buy(3S)-(-)-3-(Dimethylamino)pyrrolidine -C.; Chang, C.; Chung, Y.-L.; Shieh, C.-J. Continuous production of lipase-catalyzed biodiesel inside a packed-bed reactor: Optimization and enzyme reuse study. J. Biomed. Biotechnol. 2011, 2011, 1?.Int. J.941289-27-6 In stock Mol.PMID:33617686 Sci. 2013,25. Mears, D.E. Tests for transport limitations in experimental catalytic reactors. Ind. Eng. Chem. Procedure Des. Dev. 1971, ten, 541?47. 26. Mineralogy Database. Available online: http://webmineral/ (accessed on 19 November 2013). 27. Cussler, E.L. Fundamentals of Mass Transfer. Diffusion: Mass Transfer in Fluid Systems, 3rd ed.; Cambridge University Press: New York, NY, USA, 2009; pp. 237?73. 28. Wilke, C.R.; Chang, P. Correlation of diffusion coefficients in dilute solutions. AIChE J. 1955, 1, 264?70. 29. Bailey, J.E.; Ollis, D.F. The Kinetics of Enzyme-Catalyzed Reactions. Biochemical Engineering Fundamentals, 2nd ed.; McGraw-Hill, Inc.: Columbus, OH, USA, 1986; pp. 86?56. 30. Watanabe, Y.; Shimada, Y.; Sugihara, A.; Tominaga, Y. Enzymatic conversion of waste edible oil to biodiesel fuel in a fixed.